Some technical constraints on inference from probabilistic models
نویسنده
چکیده
not to be cited without permission (and any bits that turn out to be wrong are not to be cited even with permission) Key (More precise definitions of all these terms are given later.)
منابع مشابه
A Primer on Probabilistic Inference
Research in computer science, engineering, mathematics, and statistics has produced a variety of tools that are useful in developing probabilistic models of human cognition. We provide an introduction to the principles of probabilistic inference that are used in the papers appearing in this special issue. We lay out the basic principles that underlie probabilistic models in detail, and then bri...
متن کاملBayesian inference for motion control and planning
Bayesian motion control and planning is based on the idea of fusing motion objectives (constraints, goals, priors, etc) using probabilistic inference techniques in a way similar to Bayesian sensor fusing. This approach seems promising for tackling two fundamental problems in robotic control and planning: (1) Bayesian inference methods are an ideal candidate for fusing many sources of informatio...
متن کاملTechnical Introduction: A primer on probabilistic inference
Research in computer science, engineering, mathematics and statistics has produced a variety of tools that are useful in developing probabilistic models of human cognition. We provide an introduction to the principles of probabilistic inference that are used in the papers appearing in this special issue. We lay out the basic principles that underlie probabilistic models in detail, and then brie...
متن کاملUsing Probabilistic Views for Large-Scale Statistical Inference
Probabilistic databases extend statistical inference from limited, hand-crafted statistical models to an entire database. Data analysts can discover trends, test hypothesis, and run what-if scenarios by simply running SQL queries. The technical challenge in a probabilistic database is the query processor, which needs to perform a probabilistic inference for every row output by a SQL query: the ...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999